/**************************************************************************\

MODULE: vec_zz_p

SUMMARY:

Provides vectors over zz_p, along with some related operations.

\**************************************************************************/

#include "zz_p.h"
#include "vec_zz.h"
#include <NTL/vector.h>

typedef Vec<zz_p> vec_zz_p; // backward compatibility

void mul(vec_zz_p& x, const vec_zz_p& a, zz_p b);
void mul(vec_zz_p& x, const vec_zz_p& a, long b);

void mul(vec_zz_p& x, zz_p a, const vec_zz_p& b);
void mul(vec_zz_p& x, long a, const vec_zz_p& b);
// x = a * b

void add(vec_zz_p& x, const vec_zz_p& a, const vec_zz_p& b);
// x = a + b

void sub(vec_zz_p& x, const vec_zz_p& a, const vec_zz_p& b);
// x = a - b

void clear(vec_zz_p& x);
// x = 0 (length unchanged)

void negate(vec_zz_p& x, const vec_zz_p& a);
// x = -a

long IsZero(const vec_zz_p& a);
// test if a is the zero vector

void VectorCopy(vec_zz_p& x, const vec_zz_p& a, long n);
vec_zz_p VectorCopy(const vec_zz_p& a, long n);
// x = a copy of a of length exactly n.
// The input is truncated or padded with zeroes, as necessary.

void random(vec_zz_p& x, long n);  // x = random vector of length n
vec_zz_p random_vec_zz_p(long n);


void InnerProduct(zz_p& x, const vec_zz_p& a, const vec_zz_p& b);
// x = sum_{i=0}^{n-1} a[i]*b[i], where n = min(a.length(),
// b.length())

void InnerProduct(zz_p& x, const vec_zz_p& a, const vec_zz_p& b,
                  long offset);
// x = sum_{i=offset}^{n-1} a[i]*b[i-offset], where n = min(a.length(),
// b.length()+offset)

long CRT(vec_ZZ& a, ZZ& prod, const vec_zz_p& A);
// Incremental Chinese Remaindering: If p is the current zz_p modulus with
// (p, prod) = 1; Computes a' such that a' = a mod prod and a' = A mod p,
// with coefficients in the interval (-p*prod/2, p*prod/2]; 
// Sets a := a', prod := p*prod, and returns 1 if a's value changed.


// operator notation:

vec_zz_p operator+(const vec_zz_p& a, const vec_zz_p& b);
vec_zz_p operator-(const vec_zz_p& a, const vec_zz_p& b);

vec_zz_p operator-(const vec_zz_p& a);


// vector/scalar multiplication:

vec_zz_p operator*(const vec_zz_p& a, zz_p b);
vec_zz_p operator*(const vec_zz_p& a, long b);

vec_zz_p operator*(zz_p a, const vec_zz_p& b);
vec_zz_p operator*(long a, const vec_zz_p& b);


// inner product:

zz_p operator*(const vec_zz_p& a, const vec_zz_p& b);



// assignment operator notation:

vec_zz_p& operator+=(vec_zz_p& x, const vec_zz_p& a);
vec_zz_p& operator-=(vec_zz_p& x, const vec_zz_p& a);

vec_zz_p& operator*=(vec_zz_p& x, zz_p a);
vec_zz_p& operator*=(vec_zz_p& x, long a);