/**************************************************************************\ MODULE: GF2XFactoring SUMMARY: Routines are provided for factorization in F_2[X], as well as routines for related problems such as testing irreducibility and constructing irreducible polynomials of given degree. \**************************************************************************/ #include <NTL/GF2X.h> #include <NTL/pair_GF2X_long.h> void SquareFreeDecomp(vec_pair_GF2X_long& u, const GF2X& f); vec_pair_GF2X_long SquareFreeDecomp(const GF2X& f); // Performs square-free decomposition. f must be monic. If f = // prod_i g_i^i, then u is set to a list of pairs (g_i, i). The list // is is increasing order of i, with trivial terms (i.e., g_i = 1) // deleted. void DDF(vec_pair_GF2X_long& factors, const GF2X& f, long verbose=0); vec_pair_GF2X_long DDF(const GF2X& f, long verbose=0); // This computes a distinct-degree factorization. The input must be // monic and square-free. factors is set to a list of pairs (g, d), // where g is the product of all irreducible factors of f of degree d. // Only nontrivial pairs (i.e., g != 1) are included. void EDF(vec_GF2X& factors, const GF2X& f, long d, long verbose=0); vec_GF2X EDF(const GF2X& f, long d, long verbose=0); // Performs equal-degree factorization. f is monic, square-free, and // all irreducible factors have same degree. d = degree of // irreducible factors of f void SFCanZass(vec_GF2X& factors, const GF2X& f, long verbose=0); vec_GF2X SFCanZass(const GF2X& f, long verbose=0); // Assumes f is monic and square-free. returns list of factors of f. void CanZass(vec_pair_GF2X_long& factors, const GF2X& f, long verbose=0); vec_pair_GF2X_long CanZass(const GF2X& f, long verbose=0); // returns a list of factors, with multiplicities. f must be monic. // Calls SquareFreeDecomp and SFCanZass. void mul(GF2X& f, const vec_pair_GF2X_long& v); GF2X mul(const vec_pair_GF2X_long& v); // multiplies polynomials, with multiplicities /**************************************************************************\ Irreducible Polynomials \**************************************************************************/ long IterIrredTest(const GF2X& f); // performs an iterative deterministic irreducibility test, based on // DDF. Fast on average (when f has a small factor). void BuildSparseIrred(GF2X& f, long n); GF2X BuildSparseIrred_GF2X(long n); // Builds a monic irreducible polynomial of degree n. // If there is an irreducible trinomial X^n + X^k + 1, // then the one with minimal k is chosen. // Otherwise, if there is an irreducible pentanomial // X^n + X^k3 + X^k2 + x^k1 + 1, then the one with minimal // k3 is chosen (minimizing first k2 and then k1). // Otherwise, if there is niether an irreducible trinomial // or pentanomial, the routine result from BuildIrred (see below) // is chosen---this is probably only of academic interest, // since it a reasonable, but unproved, conjecture that they // exist for every n > 1. // For n <= 2048, the polynomial is constructed // by table lookup in a pre-computed table. // The GF2XModulus data structure and routines (and indirectly GF2E) // are optimized to deal with the output from BuildSparseIrred. void BuildIrred(GF2X& f, long n); GF2X BuildIrred_GF2X(long n); // Build a monic irreducible poly of degree n. The polynomial // constructed is "canonical" in the sense that it is of the form // f=X^n + g, where the bits of g are the those of the smallest // non-negative integer that make f irreducible. // The GF2XModulus data structure and routines (and indirectly GF2E) // are optimized to deal with the output from BuildIrred. // Note that the output from BuildSparseIrred will generally yield // a "better" representation (in terms of efficiency) for // GF(2^n) than the output from BuildIrred. void BuildRandomIrred(GF2X& f, const GF2X& g); GF2X BuildRandomIrred(const GF2X& g); // g is a monic irreducible polynomial. Constructs a random monic // irreducible polynomial f of the same degree.