
Thread boosting and polynomial factorization in NTL

Victor Shoup

November 23, 2016

As of version 9.5.0, NTL provides a thread boosting feature. With this feature, cer-
tain code within NTL will use available threads to speed up computations on a multicore
machine. This feature is enabled by setting NTL_THREAD_BOOST=on. during configuration.

This feature is a work in progress. Currently, as of version 10.3.0, basic ZZ_pX arithmetic
has been thread boosted, as well as matrix arithmetic over zz_p. Also, as of version 10.3.0,
matrix multiplication over ZZ_p has been re-implemented to use a multi-modular strategy,
which can be much faster than the old (naive) strategy (it can be 10×–40× faster, depending
on parameters). This implementation (as well as the naive implementation, which is still
used in certain parameter ranges) is also thread boosted. The modular composition routines
for ZZ_pX have also been re-implemented to make use of this faster matrix arithmetic (this
new modular composition code can be 3×–5× faster than the old code, depending on
parameters).

More code will be boosted later.
To illustrate the effectiveness of this feature, we report some benchmarks for polynomial

factorization in ZZ_pX.
All tests were carried out on a very lightly loaded machine with a 64-bit Intel “Haswell”

CPU (Intel Xeon CPU E5-2698 v3 at 2.30GHz) with plenty of memory (over 250GB) with 32
cores. The system was configured with hyperthreading disabled. The operating system was
Cent OS. The compiler was gcc v4.8.5. The NTL version was 10.3.0. NTL was built using
GMP v6.1.0. All times were measured using “wall clock time” (using the high-resolution
clock_gettime routine).

This first table gives benchmarks for factoring a degree 2048 polynomial modulo a
2048-bit prime using NTL’s CanZass routine, which implements the Kaltofen-Shoup baby
steps/giant steps variation of the Cantor-Zassenhaus algorithm.

cores 1 2 4 8 16

time (sec) 196 106 58 36 28
speedup 1.0 1.8 3.4 5.4 7.0
effectiveness (%) 100 92 84 68 44

Note that effectiveness is computed as speedup/(# cores). Space used (measured as
MAX_RSS via getrusage) was 241MB (which increased just slightly as more cores were
used).

Note that the only code that was actually “thread boosted” was the basic polynomial
arithmetic code in the low-level ZZ_pX module (including modular multiplication and mod-
ular composition) — none of the code in the ZZ_pXFactoring module was touched at all.

1

Thus, the speedups obtained reflect only the parallelism of these low-level routines, and not
any higher-level parallelism.

In the single-core computation, about 44% of the total time was spent computing xp mod
f . Most of rest of the rest of the time was spent doing Most of the remaining time was
spent doing modular compositions (using Brent/Kung) to complete the DDF stage of the
algorithm.

The following table gives the benchmarks just for the xp mod f computation, which
illustrates the effectiveness of thread boosting just the SqrMod and MulByXMod routines
used within the PowerMod routine (which uses a simple repeated-squaring algorithm).

cores 1 2 4 8 16

time (sec) 87 46 24 15 10
speedup 1.0 1.9 3.6 5.8 8.7
effectiveness (%) 100 95 91 73 54

This next table gives benchmarks for factoring a degree 4096 polynomial modulo a
4096-bit prime.

cores 1 2 4 8 16

time (sec) 2279 1171 631 369 247
speedup 1.0 1.9 3.6 6.2 9.2
effectiveness (%) 100 97 90 77 58

Space used was 1.29GB (again, increasing just slightly as more cores were used).
Again, we break out the benchmarks for the computation of xp mod f , which in the

single-core case took about 45% of the total time.

cores 1 2 4 8 16

time (sec) 1029 523 275 152 92
speedup 1.0 2.0 3.7 6.8 11.2
effectiveness (%) 100 98 94 85 70

Just for fun, we factored a degree 8× 1024 polynomial modulo an (8× 1024)-bit prime.
Using 16 threads, the time was 2850 seconds (about 48 minutes), and the space was 7.04GB.

Also just fun, we factored a degree 16 × 1024 polynomial modulo a (16 × 1024)-bit
prime. Using 16 threads, the time was 34369 seconds (just under 10 hours), and the space
was 38.9GB.

Implementation notes. Multiplication in ZZ_pX is done using a “multimodular FFT”.
This is easy to parallelize, and seems to be quite effective as long as both the modulus p
and the polynomial degree are sufficiently large. The strategy is to chop up the polynomial
coefficientwise to do the multi-remaindering/CRT steps, and let different cores work on
different chunks of coefficients. The remaining work is basically FFTs modulo a number of

2

single-precision primes (that number grows linearly in log2 p). Here, we let different cores
work on different chunks of primes.

The modular composition also makes use of matrix multiplication over ZZ_p, which is
also implemented using a multi-modular strategy that is similarly parallelized. Also, the
small prime matrix multiplications over zz_p are implemented using highly-optimized code
that is engineered to be cache friendly and to exploit the AVX instruction set.

The effect of the multi-modular matrix implementation is quite pronounced. In all of
the benchmarks above, the new factoring code is 2×–3× faster than the old code (that is
the speedup for the overall factoring routine — the speedup for modular composition alone
is even more pronounced). This comes at a trade-off, though: the overall space usage of the
new code is about double the space usage of the old code. However, this space is used in a
fairly cache friendly manner.

3

