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As of version 9.5.0, NTL provides a thread boosting feature. With this feature, cer-
tain code within NTL will use available threads to speed up computations on a multicore
machine. This feature is enabled by setting NTL_THREAD_BOOST=on. during configuration.

This feature is a work in progress. Currently, basic Z_pX arithmetic has been thread
boosted. More code will be boosted later.

To illustrate the effectiveness of this feature, we report some benchmarks for polynomial
factorization in ZZ_pX.

All tests were carried out on a very lightly loaded machine with two 64-bit Intel “Ivy
Bridge” CPUs, (Intel Xeon CPU E5-2680 v2 at 2.80GHz), each with 10 cores (so a total of 20
cores were available). The system was configured with hyperthreading disabled. The system
had plenty of memory (over 100GB) The operating system was Cent OS. The compiler was
gcc v4.9.2. NTL was built using GMP v6.0.0. All times were measured using “wall clock
time” (using the high-resolution clock_gettime routine).

This first table gives benchmarks for factoring a degree 2048 polynomial modulo a
2048-bit prime using NTL’s CanZass routine, which implements the Kaltofen-Shoup baby
steps/giant steps variation of the Cantor-Zassenhaus algorithm.

# cores 1 2 4 8 16

time (sec) 436 228 123 70 43
speedup 1.0 1.9 3.5 6.2 10.1
effectiveness (%) 100 96 89 78 63

Note that effectiveness is computed as speedup/(# cores). Space used (measured as
MAX_RSS via getrusage) was 120MB (which increased just slightly as more cores were
used).

Note that the only code that was actually “thread boosted” was the basic polynomial
arithmetic code in the low-level ZZ_pX module (including modular multiplication and mod-
ular composition) — none of the code in the ZZ_pXFactoring module was touched at all.
Thus, the speedups obtained reflect only the parallelism of these low-level routines, and not
any higher-level parallelism.

In the single-core computation, about 27% of the total time was spent computing xp mod
f . Most of the remaining time was spent doing modular compositions (using Brent/Kung)
to complete the DDF stage of the algorithm. Also, about 75% of the modular composition
time time was spent performing matrix multiplications, and the remaining 25% was spent
doing polynomial multiplications.
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The following table gives the benchmarks just for the xp mod f computation, which
illustrates the effectiveness of thread boosting just the SqrMod and MulByXMod routines
ussed within the PowerMod routine (which uses a simple repeated-squaring algorithm).

# cores 1 2 4 8 16

time (sec) 117 62 33 19 11
speedup 1.0 1.9 3.5 6.3 10.7
effectiveness (%) 100 94 88 78 67

This next table gives benchmarks for factoring a degree 4096 polynomial modulo a
4096-bit prime.

# cores 1 2 4 8 16

time (sec) 6416 3221 1669 922 519
speedup 1.0 2.0 3.8 7.0 12.4
effectiveness (%) 100 100 96 87 77

Space used was 586MB (again, increasing just slightly as more cores were used).
Again, we break out the benchmarks for the computation of xp mod f , which in the

single-core case took about 22% of the total time.

# cores 1 2 4 8 16

time (sec) 1403 752 384 208 115
speedup 1.0 1.9 3.7 6.7 12.2
effectiveness (%) 100 93 91 84 76

Just for fun, we factored a degree 8× 1024 polynomial modulo an (8× 1024)-bit prime.
Using 16 threads, the time was 7239 seconds (just over two hours), and the space was
2.9GB.

Also just fun, we factored a degree 16×1024 polynomial modulo a (16×1024)-bit prime.
Using 16 threads, the time was 107700 seconds (just under 30 hours), and the space was
15.4GB.

Implementation notes. Multiplication in ZZ_pX is done using a “multimodular FFT”.
This is easy to parallelize, and seems to be quite effective as long as both the modulus p
and the polynomial degree are sufficiently large. The strategy is to chop up the polynomial
coefficientwise to do the multi-remaindering/CRT steps, and let different cores work on
different chunks of coefficients. The remaining work is basically FFTs modulo a number of
single-precision primes (that number grows linearly in log2 p). Here, we let different cores
work on different chunks of primes.
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