NTL vs FLINT

Victor Shoup
shoup@cs.nyu.edu

February 8, 2021

0 Introduction

We have compiled some benchmarks that compare the relative performance of NTL (http://
shoup.net/ntl/) and FLINT (http://www.flintlib.org/) on some fundamental benchmarks.

0.1 Methodology

All tests were carried out on a very lightly loaded machine with a 64-bit Intel “Haswell” CPU (Intel
Xeon CPU E5-2698 v3 at 2.30GHz) with plenty of memory (over 250GB). The operating system
was Cent OS. The compiler was gcc v7.3.1.

We compared NTL v11.4.3 with FLINT v2.7.1. These were both built using GMP v6.2.0.
FLINT was built using OpenBlas v0.3.7. Both GMP and OpenBlas were configured to be optimized
the Haswell architecture.

For each basic operation, the test program generated random inputs of a given size using NTL’s
pseudo-random generator, and then converted these NTL objects to corresponding FLINT objects.
So in all cases, both libraries were working on identical objects. Also, the test program iterated
the basic operation sufficiently many time to ensure that at least 3 seconds passed (for the NTL
execution), to ensure fairly accurate timing. Time itself was measured using getrusage (system
plus user time). All tests were run on a single thread — while both NTL and FLINT can exploit
multiple threads, this behavior was not tested.

Test programs may be downloaded here: http://shoup.net/ntl/benchtools.tar.

1 Multiplication in Z,[X]

Fig. 1 compares the relative speed of NTL’s ZZ_pX mul routine with FLINT’s fmpz mod_poly mul
routine. The polynomials were generated at random to have degree less than n, and the modulus
p was chosen to be a random, odd k-bit number.! The unlabeled columns correspond to n-values
half-way between the adjacent labeled columns. For example, just to be clear: the entry in the
3rd row and 7th column corresponds to & = 1024 and n = 2048; the entry in the 3rd row and 8th
column corresponds to k = 1024 and n = 2048 + 1024 = 3072.

The numbers in the table shown are ratios:

FLINT time
NTL time

INTL’s behavior is somewhat sensitive to whether p is even or odd, and since odd numbers correspond to the case
where p is prime, we stuck with those.

So ratios greater than 1 mean NTL is faster, and ratios less than 1 mean FLINT is faster. The
ratios are also color coded. Ratios between 1/1.2 and 1.2 are gray (essentially a tie), while ratios
greater than 1.2 are green (NTL clearly wins) and those less than 1/1.2 are red (FLINT clearly
wins). Emphasis is added to ratios that are greater than 2 (and 4), or less than 1/2 (and 1/4).

The ratios in the upper right-hand corner of the table essentially compare NTL’s multi-modular
FFT algorithm with FLINT’s Kronecker-substitution algorithm. The ratios in the lower left-
hand corner of the table essentially compare NTL’s Schonhage-Strassen algorithm with FLINT’s
Schonhage-Strassen algorithm.

k/1024 n/1024

1/ 1/2 1 2 4 8 16

1/ [276 2.48 2.84 2.57 2.54 2.46 2.61 2.48 2.59 253 2.55 2.30 2.52

15| 145 157 156 1.79 1.74 2.07 2.08 2.33 244 221 254 232 3.26
1

1.07 112 111 124 122 142 140 186 185 1.99 294 2.26 2.83
2108 08 084 090 08 098 097 1.20 1.17 1.63 1.60 1.75 217
41098 100 096 1.00 1.00 100 099 1.07 106 123 1.14 143 141
8105 104 1.03 1.02 1.00 098 097 095 094 1.02 098 095 094

16 | 0.96 097 097 097 096 096 094 093 091 087 085 091 0.89

Figure 1: Multiplication in Z,[X]: n = degree bound, k = #bits in p

2 Multiplication in Z,[X]/(f)

Fig. 2 compares the relative performance of NTL’s ZZ_pX MulMod routine with FLINT’s corre-
sponding routine. The NTL routine takes as input precomputations based on f, specifically, a
ZZ_pXModulus object. The corresponding FLINT routine is fmpz_mod_poly mulmod preinv. The
modulus p was chosen to be a random, odd k-bit number. The polynomial f was a random monic
polynomial of degree n, while the two multiplicands were random polynomials of degree less than
n.

NTL is using a multi-modular FFT strategy throughout, while FLINT is using Kronecker-
substitution in the upper right region and Schonhage-Strassen in the lower left region.

The numbers in this table — and all the other tables in this report — have precisely the same
meaning as in the table in Fig. 1.

k/1024 n/1024

1/ 1/ 1 2 4 8 16

/s [431 373 425 3.74 4.00 3.57 3.94 3.61 4.04 3.66 3.88 3.36 3.88

1/ | 222 2.27 236 2.61 2.68 3.2 321 349 3.84 327 3.94 344 5.09
1]162 164 1.68 181 185 213 215 279 2.83 3.00 4.58 3.20 4.31
2 (128 1.24 127 134 134 149 151 1.82 1.83 239 254 248 3.22
4150 147 149 147 150 147 150 1.60 1.63 1.77 1.84 2.08 2.07
8| 076 078 078 079 079 076 078 081 084 087 0838 1.01 0.99

16 | 0.58 057 0.58 058 058 058 058 0.60 059 061 059 0.66 0.65

Figure 2: Multiplication in Z,[X]/(f): n = degree bound, k = #bits in p

3 Squaring in Z,[X]/(f)

Fig. 3 compares the relative performance of NTL’s ZZ_pX SqrMod routine with FLINT’s corre-
sponding routine. The NTL routine takes as input precomputations based on f, specifically, a
ZZ_pXModulus object. The corresponding FLINT routine is fmpz mod_poly mulmod preinv. This
routine internally checks if the multiplicands point to the same object, and optimizes accordingly.
The modulus p was chosen to be a random, odd k-bit number. The polynomial f was a random
monic polynomial of degree n, while the polynomial to be squared was a random polynomial of
degree less than n.

NTL is using a multi-modular FFT strategy throughout, while FLINT is using Kronecker-
substitution in the upper right region and Schénhage-Strassen in the lower left region.

Squaring in Z,[X]/(f) is a critical operation that deserves special attention, as it is the bottle-
neck in many exponentiation algorithms in Z,[X]/(f).

k/1024 n/1024

1/a 1/a 1 2 4 8 16

/s | 414 3.66 431 3.72 3.90 3.62 4.01 3.68 4.11 3.81 4.12 3.66 4.18

1| 2.38 243 251 277 2.85 3.36 3.47 3.71 4.05 3.58 4.20 3.90 5.27
1178 182 1.87 203 205 233 242 3.11 3.15 3.43 4.93 3.58 4.79
21143 143 151 151 1556 1.67 1.70 2.05 2.06 2.82 292 285 345
41162 165 165 161 167 161 166 1.77 180 189 2.01 233 231
8108 089 08 089 0.8 090 0.87 089 094 097 094 1.08 1.09

16 | 0.63 064 064 064 065 064 063 0.66 066 067 066 0.73 0.72

Figure 3: Squaring in Z,[X]/(f): n = degree bound, k = #bits in p

4 Pre-conditioned multiplication in Z,[X]/(f)

In some situations, one needs to compute ab mod f, where not only is f fixed for many operations,
but so is b. This arises, for example, in a repeated squaring exponentiation over Zy[X]/(f). As a
second example, this arises in computing successive powers of a polynomial mod f, which happens
in building the matrix used in Berlekamp’s polynomial factoring algorithm, or in Brent and Kung’s
modular composition algorithm. A third example would be scalar/vector products over Zy[X]/(f).

Fig. 4 compares the relative performance of NTL’s ZZ_pX pre-conditioned MulMod routine
with FLINT’s corresponding routine. The NTL routine takes as input precomputations based
on f and b, specifically, a ZZ_pXModulus object and a ZZ_pXMultiplier object. There is no
directly comparable FLINT routine — the best choice is the same routine we used above:
fmpz mod_poly mulmod preinv. The modulus p was chosen to be a random, odd k-bit number.
The polynomial f was a random monic polynomial of degree n, while the two multiplicands were
random polynomials of degree less than n.

NTL is using a multi-modular FFT strategy throughout, while FLINT is using Kronecker-
substitution in the upper right region and Schénhage-Strassen in the lower left region.

5 Computing GCDs in Z,[X]

Fig. 5 compares the relative performance of NTL’s ZZ_pX GCD routine with FLINT’s corresponding
routine. The modulus p was chosen to be a random k-bit prime, and the GCD was computed on
two random polynomials of degree less than k. Both libraries use a fast “Half GCD” algorithm.

k/1024 n/1024

L/a L2 1 2 4 8 16
/4 [7.79 6.38 T7.84 6.58 6.97 6.36 7.22 6.38 7.22 6.54 7.24 591 T7.12
12393 4.01 4.21 4.56 4.88 543 576 6.14 6.86 5.82 7.10 6.15 9.30
1286 286 298 3.23 333 376 3.87 500 5.04 520 838 580 7.95
21232 219 226 237 233 264 272 322 332 387 4.60 4.58 5.94

4| 261 261 270 250 272 266 271 277 294 314 333 3.64 3.72
813 139 137 139 139 139 141 141 142 156 154 1.79 1.75
16 | 1.00 101 1.02 1.02 103 101 1.02 1.06 104 107 1.05 1.17 1.15

Figure 4: Pre-conditioned multiplication in Z,[X]/(f): n = degree bound, k = #bits in p

k/1024 n/1024

1/ 1/2 1 2 4 8 16

/s [151 1.60 1.84 1.86 2.18 2.10 2.52 2.31 2.75 2.46 2.96 2.59 3.11

1| 140 147 158 164 1.75 1.77 188 1.89 2.06 2.07 2.28 225 245
1]122 130 131 1.38 141 145 149 153 1.60 163 169 1.73 1.83
2| 113 1.24 117 128 122 129 125 133 130 137 136 142 142
4116 130 127 137 133 140 137 145 142 145 147 148 1.52
8100 1.4 101 113 1.02 1.10 1.02 108 1.00 1.06 1.00 1.03 0.98

16 | 0.95 1.08 092 104 089 0.99 087 097 086 094 085 091 0.84

Figure 5: Computing GCDs in Z,[X]: n = degree bound, k = #bits in p

6 Modular composition in Z,[X]

Fig. 6 compares the relative performance of NTL’s ZZ_pX CompMod routine and the corresponding
FLINT routine fmpz mod_poly_compose mod. These routines compute g(h) mod f for polynomials
f,9,h € Z,[X] using Brent and Kung’s modular composition algorithm.

The modulus p was chosen to be a random k-bit prime. The polynomial f was chosen to be
a random monic polynomial of degree n, and the polynomials g and g were chosen to be random
polynomials of degree less than n.

k/1024 /1024
1/a 1/ 1 2 4
/s | 7.24 7.32 891 9.08 10.87 10.86 13.27 12.75 14.07

(=]
—
(54
(=]
ot
«w
3¢
[
[\
3
e J]
g

1| 615 6.53 7.32 7.87 8.78 9.56 10.38 12.12 14.64
1]524 550 6.16 6.47 7.26 7.57 8.38 9.51 10.93
2| 464 479 535 5.08 6.22 6.52 7.20 7.60 8.37
41500 512 578 594 679 6.81 7.72 7.37 8.39

Figure 6: Composition modulo a degree n polynomial in Z,[X|, k = #bits in p

7 Factoring in Z,[X]

Fig. 7 compares the relative performance of NTL’s ZZ_pX CanZass factoring routine and the cor-
responding FLINT routine fmpz mod_poly_factor_kaltofen_shoup. Both routines implement the
same algorithm, and for the range of parameters that were benchmarked, both routines are the
best each library has to offer.

The modulus p was chosen to be a random k-bit prime. The polynomial to be factored was a
random monic polynomial of degree n.

k/1024 n/1024
/s 1/a 1 2 4
/4 | 435 3.96 4.76 4.54 5.38 4.62 5.55 4.51 5.68
s | 2.62 2.64 2.60 348 3.77 450 4.46 459 5.69
1196 199 218 247 296 3.11 298 3.78 4.35
21147 158 1.66 1.75 2.02 2.09 213 2.63 3.10
4 | 1.65 1.65 1.71 1.81 1.99 1.86 2.10 2.29 2.09

Figure 7: Factoring a degree n polynomial in Zy,[X], k = #bits in p

8 Matrix multiplication over Z,

In 2016, NTL had its matrix multiplication over Z, upgraded, so as to use a multi-modular approach
that exploits the recent upgrade of its routines for matrix multiplication modulo single-precision
numbers (see §16). Note that NTL’s modular composition routines also use these faster matrix
multiplication routines, which in turn speeds up NTL’s polynomial factoring routine significantly.

Fig. 8 compares the relative performance of NTL’s mat_ZZ_p mul to the corresponding FLINT
routine fmpz mod mat_mul.

The modulus p was chosen to be a random k-bit, odd number, and the matrices multiplied were
two random n X n matrices of Zj,.

FLINT is also using a multi-modular algorithm. NTL is exploiting AVX instructions for the
small prime matrix multiplications (see §16). Also, NTL’s CRT computation exploits the fact that
the results are ultimately computed modulo p, which speeds up the CRT computations a bit.

k/1024 n/1024
1/a 12 1 2
g | 1.98 227 217 213 2.18 212 2.16
1| 1.85 210 2.05 198 2.00 1.95 2.03
11199 224 222 212 213 2.03 2.06
2184 217 211 2.06 2.08 197 2.03

Figure 8: Multiplication of n x n matrices over Z,, k = #bits in p

9 Single precision: Multiplication in Z,[X]

Fig. 9 compares the relative speed of NTL’s zz_pX mul routine with FLINT’s nmod_poly_ mul routine.
The polynomials were generated at random to have degree less than n, and the modulus p was
chosen to be a random, odd k-bit number.

Note that in this in the following eight sections, we are working with “single precision” moduli
p, i.e., moduli that fit into a single machine word. On 64-bit machines, NTL limits such moduli to
60 bits, while FLINT supports moduli up to the full 64 bits.

NTL is using a multi-modular FFT throughout, while FLINT is using Kronecker substitution
throughout.

k n,/1024

1 2 4 8 16 32 64
5054 062 066 068 073 075 078 073 090 097 1.19 1.07 126

10 | 0.74 077 085 087 092 1.08 120 124 139 142 158 159 1.61

151092 105 1.16 1.18 1.28 135 149 1,57 1.68 2.00 221 2.04 245
20 | 0.54 0.57 062 064 068 0.79 087 094 1.00 1.13 1.11 1.13 1.11
25063 072 077 082 090 09 1.05 1.10 1.25 1.40 147 138 1.51

30 | 0.87 0.88 096 097 1.09 122 139 140 1.66 1.51 1.68 153 1.68
35109 103 113 119 1.28 143 149 158 1.77 1.84 180 192 184
40 | 1.10 1.15 1.28 129 144 162 1.78 194 2.04 198 215 216 231
451122 131 146 149 1.72 186 198 212 217 236 230 230 235
50 | 0.93 1.00 1.07 1.12 124 1.38 151 152 154 1.55 1.3 156 1.59
55 | 1.00 1.08 1.22 130 140 148 160 1.77 182 195 195 2.00 2.18
60 | 1.20 126 139 149 169 1.78 1.89 194 210 197 2.06 2.03 240

Figure 9: Single precision: Multiplication in Z,[X]: n = degree bound, k = #bits in p

10 Single precision: Multiplication in Z,[X]/(f)

Fig. 10 compares the relative performance of NTL’s zz_pX MulMod routine with FLINT’s corre-
sponding routine. The NTL routine takes as input precomputations based on f, specifically, a
zz_pXModulus object. The corresponding FLINT routine is nmod_poly mulmod _preinv. The mod-
ulus p was chosen to be a random, odd k-bit number. The polynomial f was a random monic
polynomial of degree n, while the two multiplicands are random polynomial of degree less than n.

NTL is using a multi-modular FFT throughout, while FLINT is using Kronecker substitution
throughout.

k n/1024
1 2 4 8 16 32 64
5[077 080 093 100 116 114 1.36 138 160 158 179 1.76 1.04

10 | 1.13 118 1.38 141 163 1.74 198 199 221 2.09 234 239 2.69
15 | 1.50 1.63 1.89 1.97 2.28 231 2.67 254 276 2.84 299 321 3.44
201093 098 1.16 1.19 1.32 142 154 160 161 1.69 1.74 182 1.89
25| 1.18 124 143 150 1.69 1.73 192 183 2.09 2.09 237 229 253
30 | 1.52 1.55 1.79 180 213 212 234 215 255 220 250 245 2.84
35| 179 1.80 212 213 244 252 264 261 275 286 293 3.19 3.17
40 | 2.07 213 246 2.44 2.70 2.73 3.12 3.04 3.22 3.06 3.83 3.48 3.80
45 | 2.37 242 281 291 3.24 3.18 337 3.23 347 3.72 3.68 3.83 4.00
50 | 1.80 1.75 2.06 2.05 231 2.28 2.46 2.33 247 243 2.53 2.60 2.68
55| 1.99 2.03 232 231 257 259 264 274 273 277 311 3.20 3.27
60 | 237 230 2.62 258 291 281 310 3.04 346 3.08 3.38 3.26 3.91

Figure 10: Single precision: Multiplication in Z,[X]/(f): n = degree bound, k = #bits in p

11 Single precision: Squaring in Z,[X]/(f)

Fig. 11 compares the relative performance of NTL’s zz_pX SqrMod routine with FLINT’s corre-
sponding routine. The NTL routine takes as input precomputations based on f, specifically, a
zz_pXModulus object. The corresponding FLINT routine is nmod_poly mulmod preinv. This rou-
tine internally checks if the multiplicands point to the same object, and optimizes accordingly. The
modulus p was chosen to be a random, odd k-bit number. The polynomial f was a random monic

polynomial of degree n, while the polynomial to be squared was a random polynomial of degree
less than n.

NTL is using a multi-modular FFT throughout, while FLINT is using Kronecker substitution
throughout.

k n/1024
1 2 4 8 16 32 64
5081 08 100 107 123 123 144 153 164 159 195 1.76 2.06

10 | 1.22 1.25 150 1.52 1.78 1.87 215 213 236 226 249 2.52 2091
15 | 1.66 1.77 2.06 212 248 250 297 276 299 298 3.14 3.50 3.54
20| 1.00 1.03 125 126 144 150 166 169 173 1.75 193 197 1.98
25 | 1.25 131 154 159 180 1.85 2.06 196 224 223 256 246 2.71
30 | 1.62 1.66 192 191 229 224 252 230 270 236 2.67 260 2.99
35| 192 193 228 226 262 267 283 281 288 3.00 310 3.38 3.38
40 | 2.21 2.27 2.65 2.58 2.88 288 3.3¢4 3.22 337 3.19 3.88 3.64 4.16
45| 2.56 2,57 296 3.09 3.47 339 3.59 3.35 3.41 3.88 3.87 4.01 4.24
50 | 1.94 194 221 219 248 233 2.63 241 259 254 273 273 290
55 | 2.15 217 248 246 2.75 2.75 2.84 2.83 2.84 2.82 3.27 3.39 347
60 | 246 247 293 2.75 3.12 296 3.34 3.17 347 3.21 3.58 343 4.07

Figure 11: Single precision: Squaring in Z,[X]/(f): n = degree bound, k = #bits in p

12 Single precision: Pre-conditioned multiplication in Z,[X]/(f)

As in §4, we consider the computation of ab mod f, where not only is f fixed for many operations,
but so is b.

Fig. 12 compares the relative performance of NTL’s zz_pX pre-conditioned MulMod routine with
FLINT’s corresponding routine. The NTL routine takes as input precomputations based on f and b,
specifically, a zz_pXModulus object and a zz_pXMultiplier object. There is no directly comparable
FLINT routine — the best choice is the same routine we used above: nmod_poly mulmod preinv.
The modulus p was chosen to be a random, odd k-bit number. The polynomial f was a random
monic polynomial of degree n, while the two multiplicands are random polynomial of degree less
than n.

NTL is using a multi-modular FFT throughout, while FLINT is using Kronecker substitution
throughout.

13 Single precision: Computing GCDs in Z,[X]

Fig. 13 compares the relative performance of NTL’s ZZ_pX GCD routine with FLINT’s corresponding
routine. The modulus p was chosen to be a random k-bit prime, and the GCD was computed on
two random polynomials of degree less than k. Both libraries use a fast “Half GCD” algorithm.

14 Single precision: Modular composition in Z,[X]

Fig. 14 compares the relative performance of NTL’s zz_pX CompMod routine and the correspond-
ing FLINT routine nmod_poly_compose mod. These routines compute g(h) mod f for polynomials
f,9,h € Zp[X] using Brent and Kung’s modular composition algorithm.

k n/1024
1 2 4 8 16 32 64
5 [1.44 141 1.72 1.73 220 2.05 2.45 2.54 285 287 3.40 3.21 3.66
10 | 1.99 2.05 255 255 3.07 3.5 3.69 3.63 4.18 3.81 4.48 4.35 5.1
15 | 2.81 294 3.49 355 4.30 4.20 507 471 527 520 573 6.1 6.43
20 | 1.75 1.76 2.16 2.12 2.44 252 2.83 2.87 3.04 3.01 3.38 3.06 3.56
25 | 2.19 2.19 2.67 2.67 3.23 3.10 3.57 3.30 3.97 3.86 4.54 3.86 4.80
30 | 2.82 2.69 3.35 3.18 3.96 3.79 4.18 3.89 4.85 4.05 4.86 4.18 5.32
35| 3.28 324 398 3.79 4.54 450 4.93 470 5.23 5.23 5.60 526 6.06
40 | 3.81 3.79 4.59 4.33 5.02 4.86 5.88 5.49 6.09 5.50 7.04 6.39 7.49
45 | 4.36 432 5.23 5.17 6.05 5.69 6.18 5.71 6.60 6.67 6.94 6.94 7.60
50 | 3.33 3.23 3.86 3.69 4.33 4.09 4.64 4.16 4.67 4.38 4.86 4.74 5.20
55 | 3.51 3.63 4.36 4.13 4.81 4.79 4.97 4.95 5.19 5.08 598 593 6.33
60 | 425 4.12 4.94 4.64 547 5.01 5.81 5.52 6.58 5.60 6.42 6.17 7.54

Figure 12: Single precision: Pre-conditioned multiplication in Z,[X]/(f): n = degree bound, k =
#bits in p

k n,/1024

1 2 4 8 16 32 64
5095 089 091 085 089 084 092 083 094 085 093 087 1.04
10 | 098 096 098 094 101 094 1.05 096 1.10 1.00 1.17 1.06 1.27
15| 1.05 105 108 1.04 1.12 106 119 1.11 1.29 1.16 139 126 1.52
20 | 083 0.79 0.78 073 0.77 0.72 0.80 074 0.85 0.76 090 0.82 1.02
25 | 090 0.86 083 081 0.87 08l 090 0.83 098 089 1.05 096 115
30 | 1.09 1.02 107 097 1.08 099 116 1.04 1.25 110 135 1.17 146
35 [127 119 119 114 124 116 133 122 143 129 153 137 171
40 | 131 125 1.30 1.21 135 124 146 1.29 157 140 1.69 1.51 1.90
45 | 139 129 136 1.27 144 130 154 138 171 151 1.87 1.62 2.05
50 | 1.40 1.16 1.18 108 1.17 1.09 1.23 115 134 1.22 144 132 158
55| 140 1.21 124 114 1.23 115 132 1.23 143 132 158 143 172
60 | 1.44 1.26 131 121 134 127 145 135 160 148 1.75 159 193

Figure 13: Single precision: Computing GCDs in Z,[X]: n = degree bound, k = #bits in p

The modulus p was chosen to be a random k-bit prime. The polynomial f was chosen to be
a random monic polynomial of degree n, and the polynomials g and g were chosen to be random
polynomials of degree less than n.

k n,/1024

1 2 4 8 16
5[384 3.19 4.44 3.65 4.88 3.23 3.88 3.86 4.56

10 | 430 3.75 5.07 4.46 5.86 4.93 6.08 5.74 6.81

15| 499 4.53 6.02 5.53 7.22 6.73 8.20 7.66 8.92

30 | 452 4.08 5.34 4.89 6.24 5.85 6.70 6.21 7.28

60 | 5.21 4.68 6.67 5.93 8.13 7.75 9.23 8.22 9.94

Figure 14: Composition modulo a degree n polynomial in Z,[X], k = #bits in p

15 Single precision: Factoring in Z,[X]

Fig. 15 compares the relative performance of NTL’s ZZ pX CanZass factoring routine and the
corresponding FLINT routine nmod_poly_factor_kaltofen shoup. Both routines implement the
same algorithm, and for the range of parameters that were benchmarked, both routines are the
best each library has to offer.

The modulus p was chosen to be a random k-bit prime. The polynomial to be factored was a
random monic polynomial of degree n.

k n/1024

1 2 4 8 16
5[1.27 1.15 1.44 150 1.81 2.01 2.04 2.19 2.37

10 | 1.50 1.87 1.77 2.02 2.73 2.42 2.92 2.99 3.56

15 | 2.19 2.36 247 276 3.23 3.69 3.50 3.80 4.13

30 | 252 275 292 2.66 296 3.14 3.50 3.31 3.70

60 | 3.56 3.45 3.91 3.86 4.40 4.13 5.81 4.55 4.50

Figure 15: Single precision: Factoring a degree n polynomial in Z,[X], k = #bits in p

16 Single precision: Matrix multiplication over 7Z,

In 2016, NTL has had its single-precision matrix arithmetic significantly upgraded to be more cache
friendly and to take advantage of SIMD instructions on x86 machines. It has also been upgraded
to exploit multiple threads; however, all experiments reported here are single threaded.

On modern Intel processors, NTL’s implementation works (very roughly) as follows. For p up to
23-bits in length, floating point AVX instructions are used. For p up to 31-bits in length, ordinary
64-bit integer multiplication is used. For larger p, 128-bit integer multiplication is used.

Fig. 16 compares the relative performance of NTL’s mat_zz_p mul routine and the corresponding
FLINT routine nmod_mat _mul. Both routines use a subcubic Strassen recursion.

The modulus p was chosen to be a random k-bit odd number. The matrices were random n x n
matrices.

Since v2.7.0, FLINT uses elements of the BLAS library to implement matrix arithmetic modulo
small primes. Prior to this, NTL consistently performed as good as or much better than FLINT
for such operations. Now FLINT has overtaken NTL’s performance for some of these operations.
For matrix multiplication, FLINT is as good as, and sometimes twice as good as, NTL. For other
matrix operations, NTL still sometimes significantly outperforms FLINT.

17 Single precision: Matrix inversion over Z,

Fig. 17 compares the relative performance of NTL’s mat_zz p inv routine and the corresponding
FLINT routine nmod mat_inv. FLINT reduces to (subcubic) matrix multiplication, while NTL uses
a direct (cubic) implementation.

The modulus p was chosen to be a random k-bit prime. The matrices were random n X n
invertible matrices.

k n,/1024
1/2 1 2 4 8
5[083 070 067 065 063 062 063 065 0068
10| 1.14 1.05 1.01 104 105 1.04 1.19 110 1.27
15| 1.15 1.04 1.01 104 105 1.04 119 1.10 1.28
20 | 1.15 1.06 101 1.06 1.04 103 118 1.10 1.28
25 | 1.01 0.83 084 078 0.81 077 090 0.80 0.95
30072 059 080 072 076 071 085 075 0.91
35066 053 055 050 053 049 059 052 0.63
40 | 0.65 053 0.57 0.50 0.67 0.61 0.75 0.65 0.79
45 | 087 0.69 0.72 066 0.64 0.62 075 0.65 0.80
50 | 0.86 0.69 0.72 0.64 081 075 090 0.78 0.95
55 | 1.01 0.83 083 076 0.81 074 090 0.77 0.95
60 | 099 081 085 075 0.80 0.86 1.03 090 1.09

Figure 16: Single precision: Multiplication of n x n matrices over Z,, k = #bits in p

k n,/1024
1/ 1 2 4 8
5[5.07 448 3.94 3.40 2.88 2.07 186 151 128
10 | 6.58 6.24 4.97 4.36 3.66 2.68 2.37 2.05 1.83
15 | 7.53 7.00 5.52 4.83 3.95 2.84 247 214 1.90
20 | 751 7.05 5.50 4.75 3.99 2.85 255 213 1.96
25 | 2.22 206 201 185 1.66 147 127 1.15 1.06
30 | 1.84 1.71 173 158 1.33 126 1.07 1.00 091
35 | 1.69 1.62 156 156 1.18 1.07 089 0.78 0.69
40 | 1.68 1.65 1.49 145 1.17 106 0.87 087 0.74
45 [1.69 152 155 149 1.28 1.14 1.00 0.88 0.81
50 | 1.75 159 150 1.48 1.26 1.14 098 0.91 0.82
55 | .70 1.60 151 148 1.34 1.18 1.10 1.00 0.93
60 | 1.67 1.58 149 146 1.33 121 107 098 091

Figure 17: Single precision: Inversion of n X n matrices over Z,, k = #bits in p

18 Single precision: Nullspace computation over Z,

Fig. 18 compares the relative performance of NTL’s mat_zz_p kernel routine and the corresponding
FLINT routine nmod mat_nullspace. FLINT reduces to matrix multiplication, while NTL uses a
direct implementation.

The modulus p was chosen to be a random k-bit prime. The matrices were (roughly) random
n X n matrices of rank n/2.

19 Multiplication in Z[X]

Fig. 19 compares the relative speed of NTL’s ZZX mul routine with FLIN'T’s fmpz_poly_mul routine.
The polynomials were generated at random to have degree less than n, and coefficients in the range
0,...,2F - 1.

In the upper right region, NTL is using a multi-modular FFT, while FLINT is using Kronecker
substitution. In the lower left region, both are using Schénhage-Strassen.

10

k n/1024
1/ 1 2 4 8
5[390 3.36 3.24 286 239 188 201 152 133
10 | 450 4.26 3.80 3.45 2.90 2.39 2.39 200 1.64
15 | 544 5.24 420 3.75 3.8 256 252 204 1.75
20 | 5.41 518 4.27 3.77 3.10 255 259 202 1.71
25| 1.81 1.66 1.58 1.49 1.32 1.19 1.13 097 0.85
30 | 1.60 1.42 1.41 126 1.11 1.03 094 084 0.72
35| 151 1.34 127 1.19 1.00 0.92 0.78 0.69 0.56
40 | 148 1.36 1.27 117 0.99 0.90 0.78 0.72 0.60
45 | 1.50 1.33 1.27 1.19 1.04 094 0.85 0.76 0.64
50 | 1.51 1.38 126 1.18 1.04 0.93 0.85 0.76 0.64
55 | 1.47 1.35 1.27 1.18 1.07 0.97 0.92 082 0.72
60 | 1.48 1.40 1.28 1.19 1.10 0.98 0.94 083 0.73

Figure 18: Single precision: Nullspace computation of n x n matrices over Z,, k = #bits in p

k/1024 /1024

1/a 1/a 1 2 4 8 16

s | 1.63 1.50 1.69 1.57 1.55 1.56 1.64 159 1.67 1.67 1.67 1.53 1.68

/21 077 0.87 0.88 1.02 1.03 131 1.28 149 154 141 165 142 2.13
1070 064 062 073 073 089 087 120 1.17 1.29 193 151 1.96
2108 079 077 074 072 077 078 073 072 1.05 1.02 1.18 1.49
41130 130 1.28 124 121 106 1.03 1.12 1.06 1.08 1.01 0.99 0.96
8108 106 1.03 1.02 1.00 097 094 095 090 1.01 096 0.93 0.90

16 | 095 096 095 094 093 092 090 0.88 0.8 082 0.79 0.89 0.86

Figure 19: Multiplication in Z[X]: n = degree bound, k = #bits in each coefficient

20 Concluding remarks

We attempt to draw some conclusions from these benchmarks.

e NTL could perhaps be improved by improving its Schonhage-Strassen implementation, by
using Kronecker substitution in place of multi-modular FFT in some parameter ranges, and
by fine tuning some of its algorithm crossover points.

e FLINT could perhaps be improved by using a multi-modular FFT in place of Kronecker
substitution in some parameter ranges.

11

