
NTL vs FLINT

Victor Shoup
shoup@cs.nyu.edu

February 8, 2021

0 Introduction

We have compiled some benchmarks that compare the relative performance of NTL (http://
shoup.net/ntl/) and FLINT (http://www.flintlib.org/) on some fundamental benchmarks.

0.1 Methodology

All tests were carried out on a very lightly loaded machine with a 64-bit Intel “Haswell” CPU (Intel
Xeon CPU E5-2698 v3 at 2.30GHz) with plenty of memory (over 250GB). The operating system
was Cent OS. The compiler was gcc v7.3.1.

We compared NTL v11.4.3 with FLINT v2.7.1. These were both built using GMP v6.2.0.
FLINT was built using OpenBlas v0.3.7. Both GMP and OpenBlas were configured to be optimized
the Haswell architecture.

For each basic operation, the test program generated random inputs of a given size using NTL’s
pseudo-random generator, and then converted these NTL objects to corresponding FLINT objects.
So in all cases, both libraries were working on identical objects. Also, the test program iterated
the basic operation sufficiently many time to ensure that at least 3 seconds passed (for the NTL
execution), to ensure fairly accurate timing. Time itself was measured using getrusage (system
plus user time). All tests were run on a single thread — while both NTL and FLINT can exploit
multiple threads, this behavior was not tested.

Test programs may be downloaded here: http://shoup.net/ntl/benchtools.tar.

1 Multiplication in Zp[X]

Fig. 1 compares the relative speed of NTL’s ZZ pX mul routine with FLINT’s fmpz mod poly mul

routine. The polynomials were generated at random to have degree less than n, and the modulus
p was chosen to be a random, odd k-bit number.1 The unlabeled columns correspond to n-values
half-way between the adjacent labeled columns. For example, just to be clear: the entry in the
3rd row and 7th column corresponds to k = 1024 and n = 2048; the entry in the 3rd row and 8th
column corresponds to k = 1024 and n = 2048 + 1024 = 3072.

The numbers in the table shown are ratios:

FLINT time

NTL time
.

1NTL’s behavior is somewhat sensitive to whether p is even or odd, and since odd numbers correspond to the case
where p is prime, we stuck with those.

1



So ratios greater than 1 mean NTL is faster, and ratios less than 1 mean FLINT is faster. The
ratios are also color coded. Ratios between 1/1.2 and 1.2 are gray (essentially a tie), while ratios
greater than 1.2 are green (NTL clearly wins) and those less than 1/1.2 are red (FLINT clearly
wins). Emphasis is added to ratios that are greater than 2 (and 4), or less than 1/2 (and 1/4).

The ratios in the upper right-hand corner of the table essentially compare NTL’s multi-modular
FFT algorithm with FLINT’s Kronecker-substitution algorithm. The ratios in the lower left-
hand corner of the table essentially compare NTL’s Schönhage-Strassen algorithm with FLINT’s
Schönhage-Strassen algorithm.

k/1024 n/1024
1/4 1/2 1 2 4 8 16

1/4 2.76 2.48 2.84 2.57 2.54 2.46 2.61 2.48 2.59 2.53 2.55 2.30 2.52
1/2 1.45 1.57 1.56 1.79 1.74 2.07 2.08 2.33 2.44 2.21 2.54 2.32 3.26
1 1.07 1.12 1.11 1.24 1.22 1.42 1.40 1.86 1.85 1.99 2.94 2.26 2.83
2 0.83 0.85 0.84 0.90 0.88 0.98 0.97 1.20 1.17 1.63 1.60 1.75 2.17
4 0.98 1.00 0.96 1.00 1.00 1.00 0.99 1.07 1.06 1.23 1.14 1.43 1.41
8 1.05 1.04 1.03 1.02 1.00 0.98 0.97 0.95 0.94 1.02 0.98 0.95 0.94

16 0.96 0.97 0.97 0.97 0.96 0.96 0.94 0.93 0.91 0.87 0.85 0.91 0.89

Figure 1: Multiplication in Zp[X]: n = degree bound, k = #bits in p

2 Multiplication in Zp[X]/(f)

Fig. 2 compares the relative performance of NTL’s ZZ pX MulMod routine with FLINT’s corre-
sponding routine. The NTL routine takes as input precomputations based on f , specifically, a
ZZ pXModulus object. The corresponding FLINT routine is fmpz mod poly mulmod preinv. The
modulus p was chosen to be a random, odd k-bit number. The polynomial f was a random monic
polynomial of degree n, while the two multiplicands were random polynomials of degree less than
n.

NTL is using a multi-modular FFT strategy throughout, while FLINT is using Kronecker-
substitution in the upper right region and Schönhage-Strassen in the lower left region.

The numbers in this table — and all the other tables in this report — have precisely the same
meaning as in the table in Fig. 1.

k/1024 n/1024
1/4 1/2 1 2 4 8 16

1/4 4.31 3.73 4.25 3.74 4.00 3.57 3.94 3.61 4.04 3.66 3.88 3.36 3.88
1/2 2.22 2.27 2.36 2.61 2.68 3.12 3.21 3.49 3.84 3.27 3.94 3.44 5.09
1 1.62 1.64 1.68 1.81 1.85 2.13 2.15 2.79 2.83 3.00 4.58 3.20 4.31
2 1.28 1.24 1.27 1.34 1.34 1.49 1.51 1.82 1.83 2.39 2.54 2.48 3.22
4 1.50 1.47 1.49 1.47 1.50 1.47 1.50 1.60 1.63 1.77 1.84 2.08 2.07
8 0.76 0.78 0.78 0.79 0.79 0.76 0.78 0.81 0.84 0.87 0.88 1.01 0.99

16 0.58 0.57 0.58 0.58 0.58 0.58 0.58 0.60 0.59 0.61 0.59 0.66 0.65

Figure 2: Multiplication in Zp[X]/(f): n = degree bound, k = #bits in p

2



3 Squaring in Zp[X]/(f)

Fig. 3 compares the relative performance of NTL’s ZZ pX SqrMod routine with FLINT’s corre-
sponding routine. The NTL routine takes as input precomputations based on f , specifically, a
ZZ pXModulus object. The corresponding FLINT routine is fmpz mod poly mulmod preinv. This
routine internally checks if the multiplicands point to the same object, and optimizes accordingly.
The modulus p was chosen to be a random, odd k-bit number. The polynomial f was a random
monic polynomial of degree n, while the polynomial to be squared was a random polynomial of
degree less than n.

NTL is using a multi-modular FFT strategy throughout, while FLINT is using Kronecker-
substitution in the upper right region and Schönhage-Strassen in the lower left region.

Squaring in Zp[X]/(f) is a critical operation that deserves special attention, as it is the bottle-
neck in many exponentiation algorithms in Zp[X]/(f).

k/1024 n/1024
1/4 1/2 1 2 4 8 16

1/4 4.14 3.66 4.31 3.72 3.90 3.62 4.01 3.68 4.11 3.81 4.12 3.66 4.18
1/2 2.38 2.43 2.51 2.77 2.85 3.36 3.47 3.71 4.05 3.58 4.20 3.90 5.27
1 1.78 1.82 1.87 2.03 2.05 2.33 2.42 3.11 3.15 3.43 4.93 3.58 4.79
2 1.43 1.43 1.51 1.51 1.55 1.67 1.70 2.05 2.06 2.82 2.92 2.85 3.45
4 1.62 1.65 1.65 1.61 1.67 1.61 1.66 1.77 1.80 1.89 2.01 2.33 2.31
8 0.85 0.89 0.86 0.89 0.86 0.90 0.87 0.89 0.94 0.97 0.94 1.08 1.09

16 0.63 0.64 0.64 0.64 0.65 0.64 0.63 0.66 0.66 0.67 0.66 0.73 0.72

Figure 3: Squaring in Zp[X]/(f): n = degree bound, k = #bits in p

4 Pre-conditioned multiplication in Zp[X]/(f)

In some situations, one needs to compute ab mod f , where not only is f fixed for many operations,
but so is b. This arises, for example, in a repeated squaring exponentiation over Zp[X]/(f). As a
second example, this arises in computing successive powers of a polynomial mod f , which happens
in building the matrix used in Berlekamp’s polynomial factoring algorithm, or in Brent and Kung’s
modular composition algorithm. A third example would be scalar/vector products over Zp[X]/(f).

Fig. 4 compares the relative performance of NTL’s ZZ pX pre-conditioned MulMod routine
with FLINT’s corresponding routine. The NTL routine takes as input precomputations based
on f and b, specifically, a ZZ pXModulus object and a ZZ pXMultiplier object. There is no
directly comparable FLINT routine — the best choice is the same routine we used above:
fmpz mod poly mulmod preinv. The modulus p was chosen to be a random, odd k-bit number.
The polynomial f was a random monic polynomial of degree n, while the two multiplicands were
random polynomials of degree less than n.

NTL is using a multi-modular FFT strategy throughout, while FLINT is using Kronecker-
substitution in the upper right region and Schönhage-Strassen in the lower left region.

5 Computing GCDs in Zp[X]

Fig. 5 compares the relative performance of NTL’s ZZ pX GCD routine with FLINT’s corresponding
routine. The modulus p was chosen to be a random k-bit prime, and the GCD was computed on
two random polynomials of degree less than k. Both libraries use a fast “Half GCD” algorithm.

3



k/1024 n/1024
1/4 1/2 1 2 4 8 16

1/4 7.79 6.38 7.84 6.58 6.97 6.36 7.22 6.38 7.22 6.54 7.24 5.91 7.12
1/2 3.93 4.01 4.21 4.56 4.88 5.43 5.76 6.14 6.86 5.82 7.10 6.15 9.30
1 2.86 2.86 2.98 3.23 3.33 3.76 3.87 5.00 5.04 5.20 8.38 5.80 7.95
2 2.32 2.19 2.26 2.37 2.33 2.64 2.72 3.22 3.32 3.87 4.60 4.58 5.94
4 2.61 2.61 2.70 2.50 2.72 2.66 2.71 2.77 2.94 3.14 3.33 3.64 3.72
8 1.36 1.39 1.37 1.39 1.39 1.39 1.41 1.41 1.42 1.56 1.54 1.79 1.75

16 1.00 1.01 1.02 1.02 1.03 1.01 1.02 1.06 1.04 1.07 1.05 1.17 1.15

Figure 4: Pre-conditioned multiplication in Zp[X]/(f): n = degree bound, k = #bits in p

k/1024 n/1024
1/4 1/2 1 2 4 8 16

1/4 1.51 1.60 1.84 1.86 2.18 2.10 2.52 2.31 2.75 2.46 2.96 2.59 3.11
1/2 1.40 1.47 1.58 1.64 1.75 1.77 1.88 1.89 2.06 2.07 2.28 2.25 2.45
1 1.22 1.30 1.31 1.38 1.41 1.45 1.49 1.53 1.60 1.63 1.69 1.73 1.83
2 1.13 1.24 1.17 1.28 1.22 1.29 1.25 1.33 1.30 1.37 1.36 1.42 1.42
4 1.16 1.30 1.27 1.37 1.33 1.40 1.37 1.45 1.42 1.45 1.47 1.48 1.52
8 1.00 1.14 1.01 1.13 1.02 1.10 1.02 1.08 1.00 1.06 1.00 1.03 0.98

16 0.95 1.08 0.92 1.04 0.89 0.99 0.87 0.97 0.86 0.94 0.85 0.91 0.84

Figure 5: Computing GCDs in Zp[X]: n = degree bound, k = #bits in p

6 Modular composition in Zp[X]

Fig. 6 compares the relative performance of NTL’s ZZ pX CompMod routine and the corresponding
FLINT routine fmpz mod poly compose mod. These routines compute g(h) mod f for polynomials
f, g, h ∈ Zp[X] using Brent and Kung’s modular composition algorithm.

The modulus p was chosen to be a random k-bit prime. The polynomial f was chosen to be
a random monic polynomial of degree n, and the polynomials g and g were chosen to be random
polynomials of degree less than n.

k/1024 n/1024
1/4 1/2 1 2 4

1/4 7.24 7.32 8.91 9.08 10.87 10.86 13.27 12.75 14.07
1/2 6.15 6.53 7.32 7.87 8.78 9.56 10.38 12.12 14.64
1 5.24 5.50 6.16 6.47 7.26 7.57 8.38 9.51 10.93
2 4.64 4.79 5.35 5.08 6.22 6.52 7.20 7.60 8.37
4 5.00 5.12 5.78 5.94 6.79 6.81 7.72 7.37 8.39

Figure 6: Composition modulo a degree n polynomial in Zp[X], k = #bits in p

7 Factoring in Zp[X]

Fig. 7 compares the relative performance of NTL’s ZZ pX CanZass factoring routine and the cor-
responding FLINT routine fmpz mod poly factor kaltofen shoup. Both routines implement the
same algorithm, and for the range of parameters that were benchmarked, both routines are the
best each library has to offer.

4



The modulus p was chosen to be a random k-bit prime. The polynomial to be factored was a
random monic polynomial of degree n.

k/1024 n/1024
1/4 1/2 1 2 4

1/4 4.35 3.96 4.76 4.54 5.38 4.62 5.55 4.51 5.68
1/2 2.62 2.64 2.60 3.48 3.77 4.50 4.46 4.59 5.69
1 1.96 1.99 2.18 2.47 2.96 3.11 2.98 3.78 4.35
2 1.47 1.58 1.66 1.75 2.02 2.09 2.13 2.63 3.10
4 1.65 1.65 1.71 1.81 1.99 1.86 2.10 2.29 2.09

Figure 7: Factoring a degree n polynomial in Zp[X], k = #bits in p

8 Matrix multiplication over Zp

In 2016, NTL had its matrix multiplication over Zp upgraded, so as to use a multi-modular approach
that exploits the recent upgrade of its routines for matrix multiplication modulo single-precision
numbers (see §16). Note that NTL’s modular composition routines also use these faster matrix
multiplication routines, which in turn speeds up NTL’s polynomial factoring routine significantly.

Fig. 8 compares the relative performance of NTL’s mat ZZ p mul to the corresponding FLINT
routine fmpz mod mat mul.

The modulus p was chosen to be a random k-bit, odd number, and the matrices multiplied were
two random n× n matrices of Zp.

FLINT is also using a multi-modular algorithm. NTL is exploiting AVX instructions for the
small prime matrix multiplications (see §16). Also, NTL’s CRT computation exploits the fact that
the results are ultimately computed modulo p, which speeds up the CRT computations a bit.

k/1024 n/1024
1/4 1/2 1 2

1/4 1.98 2.27 2.17 2.13 2.18 2.12 2.16
1/2 1.85 2.10 2.05 1.98 2.00 1.95 2.03
1 1.99 2.24 2.22 2.12 2.13 2.03 2.06
2 1.84 2.17 2.11 2.06 2.08 1.97 2.03

Figure 8: Multiplication of n× n matrices over Zp, k = #bits in p

9 Single precision: Multiplication in Zp[X]

Fig. 9 compares the relative speed of NTL’s zz pX mul routine with FLINT’s nmod poly mul routine.
The polynomials were generated at random to have degree less than n, and the modulus p was
chosen to be a random, odd k-bit number.

Note that in this in the following eight sections, we are working with “single precision” moduli
p, i.e., moduli that fit into a single machine word. On 64-bit machines, NTL limits such moduli to
60 bits, while FLINT supports moduli up to the full 64 bits.

NTL is using a multi-modular FFT throughout, while FLINT is using Kronecker substitution
throughout.

5



k n/1024
1 2 4 8 16 32 64

5 0.54 0.62 0.66 0.68 0.73 0.75 0.78 0.73 0.90 0.97 1.19 1.07 1.26
10 0.74 0.77 0.85 0.87 0.92 1.08 1.20 1.24 1.39 1.42 1.58 1.59 1.61
15 0.92 1.05 1.16 1.18 1.28 1.35 1.49 1.57 1.68 2.00 2.21 2.04 2.45
20 0.54 0.57 0.62 0.64 0.68 0.79 0.87 0.94 1.00 1.13 1.11 1.13 1.11
25 0.63 0.72 0.77 0.82 0.90 0.96 1.05 1.10 1.25 1.40 1.47 1.38 1.51
30 0.87 0.88 0.96 0.97 1.09 1.22 1.39 1.40 1.66 1.51 1.68 1.53 1.68
35 0.96 1.03 1.13 1.19 1.28 1.43 1.49 1.58 1.77 1.84 1.80 1.92 1.84
40 1.10 1.15 1.28 1.29 1.44 1.62 1.78 1.94 2.04 1.98 2.15 2.16 2.31
45 1.22 1.31 1.46 1.49 1.72 1.86 1.98 2.12 2.17 2.36 2.30 2.30 2.35
50 0.93 1.00 1.07 1.12 1.24 1.38 1.51 1.52 1.54 1.55 1.53 1.56 1.59
55 1.00 1.08 1.22 1.30 1.40 1.48 1.60 1.77 1.82 1.95 1.95 2.00 2.18
60 1.20 1.26 1.39 1.49 1.69 1.78 1.89 1.94 2.10 1.97 2.06 2.03 2.40

Figure 9: Single precision: Multiplication in Zp[X]: n = degree bound, k = #bits in p

10 Single precision: Multiplication in Zp[X]/(f)

Fig. 10 compares the relative performance of NTL’s zz pX MulMod routine with FLINT’s corre-
sponding routine. The NTL routine takes as input precomputations based on f , specifically, a
zz pXModulus object. The corresponding FLINT routine is nmod poly mulmod preinv. The mod-
ulus p was chosen to be a random, odd k-bit number. The polynomial f was a random monic
polynomial of degree n, while the two multiplicands are random polynomial of degree less than n.

NTL is using a multi-modular FFT throughout, while FLINT is using Kronecker substitution
throughout.

k n/1024
1 2 4 8 16 32 64

5 0.77 0.80 0.93 1.00 1.16 1.14 1.36 1.38 1.60 1.58 1.79 1.76 1.94
10 1.13 1.18 1.38 1.41 1.63 1.74 1.98 1.99 2.21 2.09 2.34 2.39 2.69
15 1.50 1.63 1.89 1.97 2.28 2.31 2.67 2.54 2.76 2.84 2.99 3.21 3.44
20 0.93 0.98 1.16 1.19 1.32 1.42 1.54 1.60 1.61 1.69 1.74 1.82 1.89
25 1.18 1.24 1.43 1.50 1.69 1.73 1.92 1.83 2.09 2.09 2.37 2.29 2.53
30 1.52 1.55 1.79 1.80 2.13 2.12 2.34 2.15 2.55 2.20 2.50 2.45 2.84
35 1.79 1.80 2.12 2.13 2.44 2.52 2.64 2.61 2.75 2.86 2.93 3.19 3.17
40 2.07 2.13 2.46 2.44 2.70 2.73 3.12 3.04 3.22 3.06 3.83 3.48 3.80
45 2.37 2.42 2.81 2.91 3.24 3.18 3.37 3.23 3.47 3.72 3.68 3.83 4.00
50 1.80 1.75 2.06 2.05 2.31 2.28 2.46 2.33 2.47 2.43 2.53 2.60 2.68
55 1.99 2.03 2.32 2.31 2.57 2.59 2.64 2.74 2.73 2.77 3.11 3.20 3.27
60 2.37 2.30 2.62 2.58 2.91 2.81 3.10 3.04 3.46 3.08 3.38 3.26 3.91

Figure 10: Single precision: Multiplication in Zp[X]/(f): n = degree bound, k = #bits in p

11 Single precision: Squaring in Zp[X]/(f)

Fig. 11 compares the relative performance of NTL’s zz pX SqrMod routine with FLINT’s corre-
sponding routine. The NTL routine takes as input precomputations based on f , specifically, a
zz pXModulus object. The corresponding FLINT routine is nmod poly mulmod preinv. This rou-
tine internally checks if the multiplicands point to the same object, and optimizes accordingly. The
modulus p was chosen to be a random, odd k-bit number. The polynomial f was a random monic

6



polynomial of degree n, while the polynomial to be squared was a random polynomial of degree
less than n.

NTL is using a multi-modular FFT throughout, while FLINT is using Kronecker substitution
throughout.

k n/1024
1 2 4 8 16 32 64

5 0.84 0.85 1.00 1.07 1.23 1.23 1.44 1.53 1.64 1.59 1.95 1.76 2.06
10 1.22 1.25 1.50 1.52 1.78 1.87 2.15 2.13 2.36 2.26 2.49 2.52 2.91
15 1.66 1.77 2.06 2.12 2.48 2.50 2.97 2.76 2.99 2.98 3.14 3.50 3.54
20 1.00 1.03 1.25 1.26 1.44 1.50 1.66 1.69 1.73 1.75 1.93 1.97 1.98
25 1.25 1.31 1.54 1.59 1.80 1.85 2.06 1.96 2.24 2.23 2.56 2.46 2.71
30 1.62 1.66 1.92 1.91 2.29 2.24 2.52 2.30 2.70 2.36 2.67 2.60 2.99
35 1.92 1.93 2.28 2.26 2.62 2.67 2.83 2.81 2.88 3.00 3.10 3.38 3.38
40 2.21 2.27 2.65 2.58 2.88 2.88 3.34 3.22 3.37 3.19 3.88 3.64 4.16
45 2.56 2.57 2.96 3.09 3.47 3.39 3.59 3.35 3.41 3.88 3.87 4.01 4.24
50 1.94 1.94 2.21 2.19 2.48 2.33 2.63 2.41 2.59 2.54 2.73 2.73 2.90
55 2.15 2.17 2.48 2.46 2.75 2.75 2.84 2.83 2.84 2.82 3.27 3.39 3.47
60 2.46 2.47 2.93 2.75 3.12 2.96 3.34 3.17 3.47 3.21 3.58 3.43 4.07

Figure 11: Single precision: Squaring in Zp[X]/(f): n = degree bound, k = #bits in p

12 Single precision: Pre-conditioned multiplication in Zp[X]/(f)

As in §4, we consider the computation of ab mod f , where not only is f fixed for many operations,
but so is b.

Fig. 12 compares the relative performance of NTL’s zz pX pre-conditioned MulMod routine with
FLINT’s corresponding routine. The NTL routine takes as input precomputations based on f and b,
specifically, a zz pXModulus object and a zz pXMultiplier object. There is no directly comparable
FLINT routine — the best choice is the same routine we used above: nmod poly mulmod preinv.
The modulus p was chosen to be a random, odd k-bit number. The polynomial f was a random
monic polynomial of degree n, while the two multiplicands are random polynomial of degree less
than n.

NTL is using a multi-modular FFT throughout, while FLINT is using Kronecker substitution
throughout.

13 Single precision: Computing GCDs in Zp[X]

Fig. 13 compares the relative performance of NTL’s ZZ pX GCD routine with FLINT’s corresponding
routine. The modulus p was chosen to be a random k-bit prime, and the GCD was computed on
two random polynomials of degree less than k. Both libraries use a fast “Half GCD” algorithm.

14 Single precision: Modular composition in Zp[X]

Fig. 14 compares the relative performance of NTL’s zz pX CompMod routine and the correspond-
ing FLINT routine nmod poly compose mod. These routines compute g(h) mod f for polynomials
f, g, h ∈ Zp[X] using Brent and Kung’s modular composition algorithm.

7



k n/1024
1 2 4 8 16 32 64

5 1.44 1.41 1.72 1.73 2.20 2.05 2.45 2.54 2.85 2.87 3.40 3.21 3.66
10 1.99 2.05 2.55 2.55 3.07 3.15 3.69 3.63 4.18 3.81 4.48 4.35 5.11
15 2.81 2.94 3.49 3.55 4.30 4.20 5.07 4.71 5.27 5.20 5.73 6.11 6.43
20 1.75 1.76 2.16 2.12 2.44 2.52 2.83 2.87 3.04 3.01 3.38 3.06 3.56
25 2.19 2.19 2.67 2.67 3.23 3.10 3.57 3.30 3.97 3.86 4.54 3.86 4.80
30 2.82 2.69 3.35 3.18 3.96 3.79 4.18 3.89 4.85 4.05 4.86 4.18 5.32
35 3.28 3.24 3.98 3.79 4.54 4.50 4.93 4.70 5.23 5.23 5.60 5.26 6.06
40 3.81 3.79 4.59 4.33 5.02 4.86 5.88 5.49 6.09 5.50 7.04 6.39 7.49
45 4.36 4.32 5.23 5.17 6.05 5.69 6.18 5.71 6.60 6.67 6.94 6.94 7.60
50 3.33 3.23 3.86 3.69 4.33 4.09 4.64 4.16 4.67 4.38 4.86 4.74 5.20
55 3.51 3.63 4.36 4.13 4.81 4.79 4.97 4.95 5.19 5.08 5.98 5.93 6.33
60 4.25 4.12 4.94 4.64 5.47 5.01 5.81 5.52 6.58 5.60 6.42 6.17 7.54

Figure 12: Single precision: Pre-conditioned multiplication in Zp[X]/(f): n = degree bound, k =
#bits in p

k n/1024
1 2 4 8 16 32 64

5 0.95 0.89 0.91 0.85 0.89 0.84 0.92 0.83 0.94 0.85 0.98 0.87 1.04
10 0.98 0.96 0.98 0.94 1.01 0.94 1.05 0.96 1.10 1.00 1.17 1.06 1.27
15 1.05 1.05 1.08 1.04 1.12 1.06 1.19 1.11 1.29 1.16 1.39 1.26 1.52
20 0.83 0.79 0.78 0.73 0.77 0.72 0.80 0.74 0.85 0.76 0.90 0.82 1.02
25 0.90 0.86 0.83 0.81 0.87 0.81 0.90 0.83 0.98 0.89 1.05 0.96 1.15
30 1.09 1.02 1.07 0.97 1.08 0.99 1.16 1.04 1.25 1.10 1.35 1.17 1.46
35 1.27 1.19 1.19 1.14 1.24 1.16 1.33 1.22 1.43 1.29 1.53 1.37 1.71
40 1.31 1.25 1.30 1.21 1.35 1.24 1.46 1.29 1.57 1.40 1.69 1.51 1.90
45 1.39 1.29 1.36 1.27 1.44 1.30 1.54 1.38 1.71 1.51 1.87 1.62 2.05
50 1.40 1.16 1.18 1.08 1.17 1.09 1.23 1.15 1.34 1.22 1.44 1.32 1.58
55 1.40 1.21 1.24 1.14 1.23 1.15 1.32 1.23 1.43 1.32 1.58 1.43 1.72
60 1.44 1.26 1.31 1.21 1.34 1.27 1.45 1.35 1.60 1.48 1.75 1.59 1.93

Figure 13: Single precision: Computing GCDs in Zp[X]: n = degree bound, k = #bits in p

The modulus p was chosen to be a random k-bit prime. The polynomial f was chosen to be
a random monic polynomial of degree n, and the polynomials g and g were chosen to be random
polynomials of degree less than n.

k n/1024
1 2 4 8 16

5 3.84 3.19 4.44 3.65 4.88 3.23 3.88 3.86 4.56
10 4.30 3.75 5.07 4.46 5.86 4.93 6.08 5.74 6.81
15 4.99 4.53 6.02 5.53 7.22 6.73 8.20 7.66 8.92
30 4.52 4.08 5.34 4.89 6.24 5.85 6.70 6.21 7.28
60 5.21 4.68 6.67 5.93 8.13 7.75 9.23 8.22 9.94

Figure 14: Composition modulo a degree n polynomial in Zp[X], k = #bits in p

8



15 Single precision: Factoring in Zp[X]

Fig. 15 compares the relative performance of NTL’s ZZ pX CanZass factoring routine and the
corresponding FLINT routine nmod poly factor kaltofen shoup. Both routines implement the
same algorithm, and for the range of parameters that were benchmarked, both routines are the
best each library has to offer.

The modulus p was chosen to be a random k-bit prime. The polynomial to be factored was a
random monic polynomial of degree n.

k n/1024
1 2 4 8 16

5 1.27 1.15 1.44 1.50 1.81 2.01 2.04 2.19 2.37
10 1.50 1.87 1.77 2.02 2.73 2.42 2.92 2.99 3.56
15 2.19 2.36 2.47 2.76 3.23 3.69 3.50 3.80 4.13
30 2.52 2.75 2.92 2.66 2.96 3.14 3.50 3.31 3.70
60 3.56 3.45 3.91 3.86 4.40 4.13 5.81 4.55 4.50

Figure 15: Single precision: Factoring a degree n polynomial in Zp[X], k = #bits in p

16 Single precision: Matrix multiplication over Zp

In 2016, NTL has had its single-precision matrix arithmetic significantly upgraded to be more cache
friendly and to take advantage of SIMD instructions on x86 machines. It has also been upgraded
to exploit multiple threads; however, all experiments reported here are single threaded.

On modern Intel processors, NTL’s implementation works (very roughly) as follows. For p up to
23-bits in length, floating point AVX instructions are used. For p up to 31-bits in length, ordinary
64-bit integer multiplication is used. For larger p, 128-bit integer multiplication is used.

Fig. 16 compares the relative performance of NTL’s mat zz p mul routine and the corresponding
FLINT routine nmod mat mul. Both routines use a subcubic Strassen recursion.

The modulus p was chosen to be a random k-bit odd number. The matrices were random n×n
matrices.

Since v2.7.0, FLINT uses elements of the BLAS library to implement matrix arithmetic modulo
small primes. Prior to this, NTL consistently performed as good as or much better than FLINT
for such operations. Now FLINT has overtaken NTL’s performance for some of these operations.
For matrix multiplication, FLINT is as good as, and sometimes twice as good as, NTL. For other
matrix operations, NTL still sometimes significantly outperforms FLINT.

17 Single precision: Matrix inversion over Zp

Fig. 17 compares the relative performance of NTL’s mat zz p inv routine and the corresponding
FLINT routine nmod mat inv. FLINT reduces to (subcubic) matrix multiplication, while NTL uses
a direct (cubic) implementation.

The modulus p was chosen to be a random k-bit prime. The matrices were random n × n
invertible matrices.

9



k n/1024
1/2 1 2 4 8

5 0.83 0.70 0.67 0.65 0.63 0.62 0.63 0.65 0.68
10 1.14 1.05 1.01 1.04 1.05 1.04 1.19 1.10 1.27
15 1.15 1.04 1.01 1.04 1.05 1.04 1.19 1.10 1.28
20 1.15 1.06 1.01 1.06 1.04 1.03 1.18 1.10 1.28
25 1.01 0.83 0.84 0.78 0.81 0.77 0.90 0.80 0.95
30 0.72 0.59 0.80 0.72 0.76 0.71 0.85 0.75 0.91
35 0.66 0.53 0.55 0.50 0.53 0.49 0.59 0.52 0.63
40 0.65 0.53 0.57 0.50 0.67 0.61 0.75 0.65 0.79
45 0.87 0.69 0.72 0.66 0.64 0.62 0.75 0.65 0.80
50 0.86 0.69 0.72 0.64 0.81 0.75 0.90 0.78 0.95
55 1.01 0.83 0.83 0.76 0.81 0.74 0.90 0.77 0.95
60 0.99 0.81 0.85 0.75 0.80 0.86 1.03 0.90 1.09

Figure 16: Single precision: Multiplication of n× n matrices over Zp, k = #bits in p

k n/1024
1/2 1 2 4 8

5 5.07 4.48 3.94 3.40 2.88 2.07 1.86 1.51 1.28
10 6.58 6.24 4.97 4.36 3.66 2.68 2.37 2.05 1.83
15 7.53 7.00 5.52 4.83 3.95 2.84 2.47 2.14 1.90
20 7.51 7.05 5.50 4.75 3.99 2.85 2.55 2.13 1.96
25 2.22 2.06 2.01 1.85 1.66 1.47 1.27 1.15 1.06
30 1.84 1.71 1.73 1.58 1.33 1.26 1.07 1.00 0.91
35 1.69 1.62 1.56 1.56 1.18 1.07 0.89 0.78 0.69
40 1.68 1.65 1.49 1.45 1.17 1.06 0.87 0.87 0.74
45 1.69 1.52 1.55 1.49 1.28 1.14 1.00 0.88 0.81
50 1.75 1.59 1.50 1.48 1.26 1.14 0.98 0.91 0.82
55 1.70 1.60 1.51 1.48 1.34 1.18 1.10 1.00 0.93
60 1.67 1.58 1.49 1.46 1.33 1.21 1.07 0.98 0.91

Figure 17: Single precision: Inversion of n× n matrices over Zp, k = #bits in p

18 Single precision: Nullspace computation over Zp

Fig. 18 compares the relative performance of NTL’s mat zz p kernel routine and the corresponding
FLINT routine nmod mat nullspace. FLINT reduces to matrix multiplication, while NTL uses a
direct implementation.

The modulus p was chosen to be a random k-bit prime. The matrices were (roughly) random
n× n matrices of rank n/2.

19 Multiplication in Z[X]

Fig. 19 compares the relative speed of NTL’s ZZX mul routine with FLINT’s fmpz poly mul routine.
The polynomials were generated at random to have degree less than n, and coefficients in the range
0, . . . , 2k − 1.

In the upper right region, NTL is using a multi-modular FFT, while FLINT is using Kronecker
substitution. In the lower left region, both are using Schönhage-Strassen.

10



k n/1024
1/2 1 2 4 8

5 3.90 3.36 3.24 2.86 2.39 1.88 2.01 1.52 1.33
10 4.50 4.26 3.80 3.45 2.90 2.39 2.39 2.00 1.64
15 5.44 5.24 4.20 3.75 3.18 2.56 2.52 2.04 1.75
20 5.41 5.18 4.27 3.77 3.10 2.55 2.59 2.02 1.71
25 1.81 1.66 1.58 1.49 1.32 1.19 1.13 0.97 0.85
30 1.60 1.42 1.41 1.26 1.11 1.03 0.94 0.84 0.72
35 1.51 1.34 1.27 1.19 1.00 0.92 0.78 0.69 0.56
40 1.48 1.36 1.27 1.17 0.99 0.90 0.78 0.72 0.60
45 1.50 1.33 1.27 1.19 1.04 0.94 0.85 0.76 0.64
50 1.51 1.38 1.26 1.18 1.04 0.93 0.85 0.76 0.64
55 1.47 1.35 1.27 1.18 1.07 0.97 0.92 0.82 0.72
60 1.48 1.40 1.28 1.19 1.10 0.98 0.94 0.83 0.73

Figure 18: Single precision: Nullspace computation of n× n matrices over Zp, k = #bits in p

k/1024 n/1024
1/4 1/2 1 2 4 8 16

1/4 1.63 1.50 1.69 1.57 1.55 1.56 1.64 1.59 1.67 1.67 1.67 1.53 1.68
1/2 0.77 0.87 0.88 1.02 1.03 1.31 1.28 1.49 1.54 1.41 1.65 1.42 2.13
1 0.70 0.64 0.62 0.73 0.73 0.89 0.87 1.20 1.17 1.29 1.93 1.51 1.96
2 0.82 0.79 0.77 0.74 0.72 0.77 0.78 0.73 0.72 1.05 1.02 1.18 1.49
4 1.30 1.30 1.28 1.24 1.21 1.06 1.03 1.12 1.06 1.08 1.01 0.99 0.96
8 1.08 1.06 1.03 1.02 1.00 0.97 0.94 0.95 0.90 1.01 0.96 0.93 0.90

16 0.95 0.96 0.95 0.94 0.93 0.92 0.90 0.88 0.86 0.82 0.79 0.89 0.86

Figure 19: Multiplication in Z[X]: n = degree bound, k = #bits in each coefficient

20 Concluding remarks

We attempt to draw some conclusions from these benchmarks.

• NTL could perhaps be improved by improving its Schönhage-Strassen implementation, by
using Kronecker substitution in place of multi-modular FFT in some parameter ranges, and
by fine tuning some of its algorithm crossover points.

• FLINT could perhaps be improved by using a multi-modular FFT in place of Kronecker
substitution in some parameter ranges.

11


